116 research outputs found

    Report of the Special-purpose Committee on Virtual Participation in the Nomenclature Section

    Get PDF
    The Special-purpose Committee on Virtual Participation in the Nomenclature Section was established by the XIX International Botanical Congress (IBC) in Shenzhen, China in 2017, with the mandate “to investigate the possibility of and mechanisms for virtual participation and voting in the Nomenclature Section of an International Botanical Congress via the internet” and to report to the XX IBC. The wide access to the World Wide Web and availability of software for virtual meetings makes the possibility for virtual (online) attendance and voting at a Nomenclature Section seem attainable and advisable. In order to make informed recommendations, we discussed various aspects of online attendance and voting, such as: who should be able to observe?; what would qualify a person to cast institutional votes and personal votes?; if the accumulation of institutional votes should be allowed by an online voter; registration of online voters; how costs would be covered; and recommendations for online attendees. This report provides a synthesis of our discussions and is necessary for interpreting the proposals of this Special-purpose Committee to change aspects of Div. III (Provisions for governance) of the Code (Landrum & al. in Taxon 70: 1397–1398. 2021). This report and those proposals should be consulted together.Fil: Landrum, Leslie R.. Arizona State University; Estados UnidosFil: Fortunato, Renee Hersilia. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Barkworth, Mary. State University of Utah; Estados UnidosFil: Breitwieser, Ilse. Manaaki Whenua – Landcare Research; Nueva ZelandaFil: Demissew, Sebsebe. Addis Ababa University; EtiopíaFil: Dönmez, Ali A.. Hacettepe University; TurquíaFil: Dutta, Suchandra. Rishi Dayaram And Seth Hassaram National College And Seth Wassiamull Assomull Science College; IndiaFil: Freire Fierro, Alina. Universidad Regional Amazónica Ikiam; EcuadorFil: Kim, Young Dong. Hallym University; Corea del SurFil: León, Blanca. Universidad Nacional Mayor de San Marcos; PerúFil: Moore, Gerry. United States Department of Agriculture; Estados UnidosFil: Mosyakin, Sergei L.. Academy of Sciences of Ukraine; UcraniaFil: Oh, Sang Hun. Daejeon University; Corea del SurFil: Parra-O, Carlos. Universidad Nacional de Colombia; ColombiaFil: Prado, Jefferson. Instituto de Botânica de Sao Paulo; BrasilFil: Rico Arce, Lourdes. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; México. Royal Botanic Gardens; Reino UnidoFil: Sennikov, Alexander N.. Russian Academy of Sciences; Rusia. University of Helsinki; FinlandiaFil: Smith, Gideon F.. Nelson Mandela University; Sudáfric

    Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML

    Get PDF
    Occurrence of the BCR-ABL[superscript T315I] gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABL[superscript T315I]. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABL[superscript T315I] CML cells on c-Myc through nonobvious off targets

    Loss of ATF2 Function Leads to Cranial Motoneuron Degeneration during Embryonic Mouse Development

    Get PDF
    The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS

    Atomic Scale Modelling of Two-Dimensional Molecular Self-Assembly on a Passivated Si Surface

    No full text
    International audienceThe self-assembly of two-dimensional (2D) molecular structures on a solid surface relies on the subtle balance between non covalent intermolecular and molecule-surface forces. The energetics of 2D molecular lattices forming different patterns on a passivated semiconductor surface are here investigated by a combination of atomistic simulation methods. Density-functional theory provides structure and charges of the molecules, while metadynamics with empirical forces provides a best guess for the lowest-energy adsorption sites of single molecules and dimers. Subsequently, molecular dynamics simulations of extended molecular assemblies with empirical forces yield the most favorable lattice structures at finite temperature and pressure.The theoretical results are in good agreement with scanning tunneling microscopy observations of self-assembled molecular monolayers on a B-doped Si(111) surface, thus allowing to rationalize the competition of long-range dispersion forces between the molecules and the surface. Such a result demonstrates the interest of this predictive approach for further progress in supramolecular chemistry on semiconductor surface

    Exploration of neural correlates of movement intention based on characterisation of temporal dependencies in electroencephalography

    Get PDF
    Brain computer interfaces (BCIs) provide a direct communication channel by using brain signals, enabling patients with motor impairments to interact with external devices. Motion intention detection is useful for intuitive movement-based BCI as movement is the fundamental mode of interaction with the environment. The aim of this paper is to investigate the temporal dynamics of brain processes using electroencephalography (EEG) to explore novel neural correlates of motion intention. We investigate the changes in temporal dependencies of the EEG by characterising the decay of autocorrelation during asynchronous voluntary finger tapping movement. The evolution of the autocorrelation function is characterised by its relaxation time, which is used as a robust marker for motion intention. We observed that there was reorganisation of temporal dependencies in EEG during motion intention. The autocorrelation decayed slower during movement intention and faster during the resting state. There was an increase in temporal dependence during movement intention. The relaxation time of the autocorrelation function showed significant (p < 0.05) discrimination between movement and resting state with the mean sensitivity of 78.37 ± 8.83%. The relaxation time provides movement related information that is complementary to the well-known event-related desynchronisation (ERD) by characterising the broad band EEG dynamics which is frequency independent in contrast to ERD. It can also detect motion intention on average 0.51s before the actual movement onset. We have thoroughly compared autocorrelation relaxation time features with ERD in four frequency bands. The relaxation time may therefore, complement the well-known features used in motion-based BCI leading to more robust and intuitive BCI solutions. The results obtained suggest that changes in autocorrelation decay may involve reorganisation of temporal dependencies of brain activity over longer duration during motion intention. This opens the possibilities of investigating further the temporal dynamics of fundamental neural processes underpinning motion intention

    Amino Acid Availability Controls TRB3 Transcription in Liver through the GCN2/eIF2α/ATF4 Pathway

    Get PDF
    In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE) in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPβ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver

    Emerging roles of ATF2 and the dynamic AP1 network in cancer

    Get PDF
    Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.Fil: Lopez Bergami, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Lau, Eric . Burnham Institute for Medical Research; Estados UnidosFil: Ronai, Zeev . Burnham Institute for Medical Research; Estados Unido
    corecore